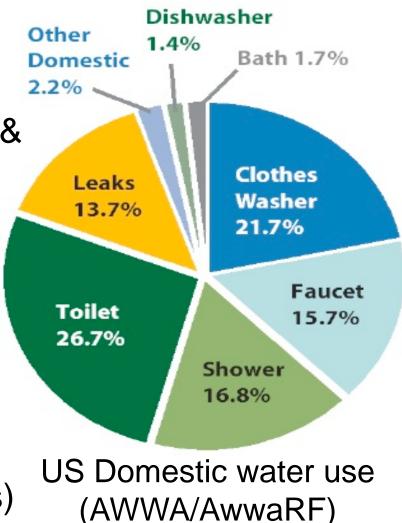


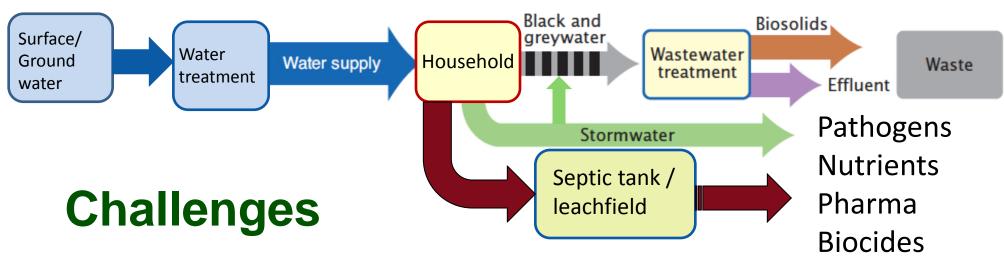
UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Matching Water Quality to Reuse: Rationale for performance-based targets & A systems approach to manage public health Nicholas ASHBOLT (Ashbolt@UAlberta.ca) Alberta Innovates – Health Solutions **Translational Research Chair in Water**

Re-Fresh: The Confluence of Ideas & Opportunities on Water Reuse Alberta Water Council Symposium, Arts Hotel, Calgary, June 25th, 2014

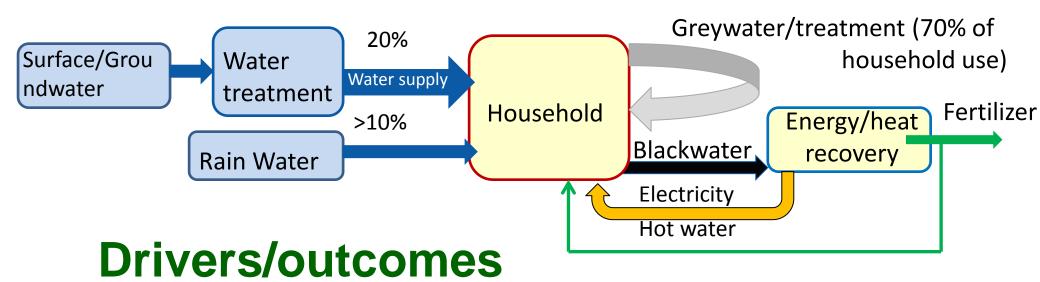

John Snow, cholera studies (1849-55): Father of epidemiology & HACCP

- Cholera introduced ~1831, but miasma theory until Robert Koch identified the bacillus agent (1883)
- English epidemics: 1832 killed
 23,000, 1848-9 (53,000), 1853-4
 (23,000) & the last 1866 (14,000)
 - One outbreak 1854; Snow plotted deaths & identified Broad St. pump
 - Control measure: pump handle off; but...
- Snow's work let to DW focus, yet Rev. Whitehead focus was faeces
 http://fx.damasgate.com/iohn-snow-and-cholera/ Whitehead identified the problem!



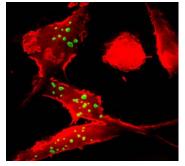
Water system issues: access & population growth, climate change, & eco-service loss

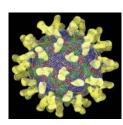
- Adaptive approaches & tools to aid in decision-making:
 - Treating water so fit-for-purpose & with performance-based targets
 - Full cost accounting for water services to be driven by resource recovery (energy, heat, water...) over built environ system life-time (Integrated Resource Manag't)
 - Health risk assessments for all water exposure pathways (harmonized so focus on key ones)



Urban water service system

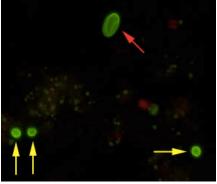
- Water services utilize ~3-7% of a nation's electricity
- Insufficient nutrient and energy recovery & yield 3% GHG
- Aging water and wastewater infrastructure \$trillions to maintain
- Sewer/septic system releases major cause of eutrophication
- Neither climate/demographic resilient nor economic


Hence, alternative urban water elements for 'One-water' concept, market led

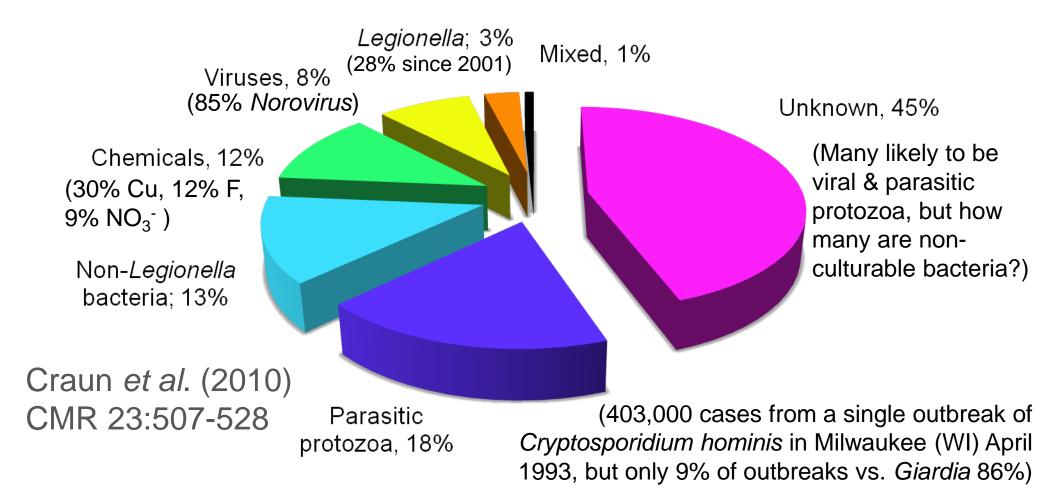

- Reduce energy use + GHG & nutrient emissions
 Market-driven water, energy & nutrient recovery
- Climate- & demographic-resilient infrastructure
 Decentralized, adaptable and antifragile

Human & Ecological hazards in 'wastewaters'

Pathogens


Environmental

Bacteria Chemicals


Parasitic protozoa

Nutrients, cleaning agents, metals, biocides & pharmaceuticals

Etiologic agents & percentages for 780 drinking water outbreaks, 1971-2006 USA

Public health hospitalization costs from drinking water in the United States*

- CDC estimate drinking water disease costs > \$970 m/y
 - Less so faecal pathogens, largely Legionnaires' disease, otitis externa, and non-tuberculous mycobacterial (NTM) causing >40 000 hospitalizations/year

Disease	Annual costs
Cryptosporidiosis	\$46M
Giardiasis	\$34M
Legionnaires' disease	\$434M
NTM infection/Pulmonary	\$426M/ \$195M

*Collier et al. (2012) Epidemiology & Infection 140: 2003-2013

The Economist

AUGUST 18TH-24TH 2012

The Catholic church's unholy mess Paul Ryan: the man with the plan **Generation Xhausted** China, victim of the Olympics? On the origin of specie

, 90% of the cells

in your body

Microbes maketh man rather we we we gove by egge

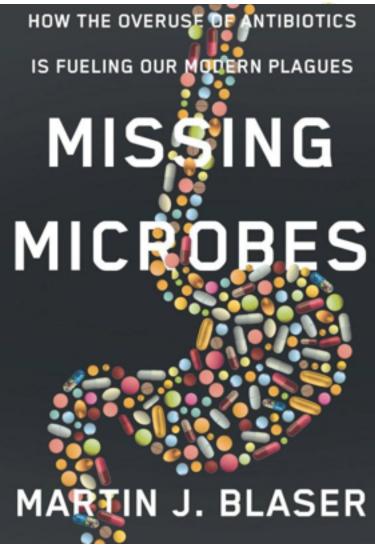
Economist.com

Public health & microbial roles

- 'Healthy' gut microbiome displaces pathogens/toxins
 - Production of bacteriocins, acids, H₂O₂, quorum sensor
 - Detoxication (vs detoxification) e.g. by Lactobacillus
- Increased diseases via some microbial metabolites
 - − E.g. cardio-vascular disease via trimethylamine →TMAO¹
- Childhood loss of gut microbiome members

– Antibiotics & obesity²

– Antibiotics & E. coli O104:H4 increased virulence³


¹Howitt & Garrett 2012 Nature Med 18:1188-89 ²Cox & Blaser (2013) *Cell Metabolism* 17(6): 883-94 ³Kamada *et al.* (2012) *Nature Medicine* 18(8):1190-1191

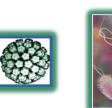
Antibiotics & antibiotic-resistant bacteria via water exposures?

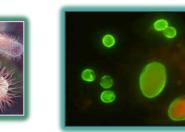
- Fat Drugs (antibiotics promote child weight)
 - Used in agriculture for weight gain
 - Part of the human obesity problem
- Primary waterborne sources include
 - Wastewater (industry & hospitals)
 - Animal production/manures
- Mass delivery via reclaimed water?

11

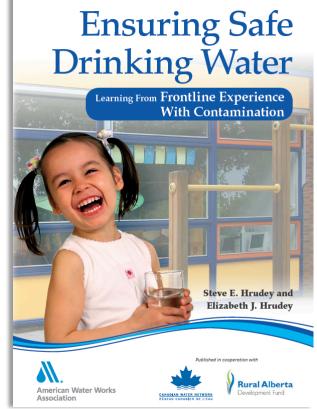
 Water disinfectants and metal pipes known to increase gene exchange within biofilms → loss of AB efficacy
 Cox & Blaser (2013) Cell Metab 17: 883-94
 Gough *et al.* (2014) *BMJ 348*: g2267

California Title 22 (1978, 2007)


- Specifies treatment steps (with described log-reductions by unit processes), requiring:
 5-log₁₀ virus reduction based on spiking studies^{*}
- Total Coliforms (<2.2 MPN/100 mL) as a **[poor]** overall index of treatment performance
- NTU <2 (daily average) & chlorine 1 mg/L


*F-RNA coliphage MS2 (ATCC 15597B1, grown on *E. coli* ATCC 15597), poliovirus or other virus that is at least as resistant to poliovirus (based on Pomona Virus Study [Nellor *et al.* 1994 Health Effects Study, County Sanitation Districts of LA County])

Major international microbial criteria for non-potable reuse (by 1995)

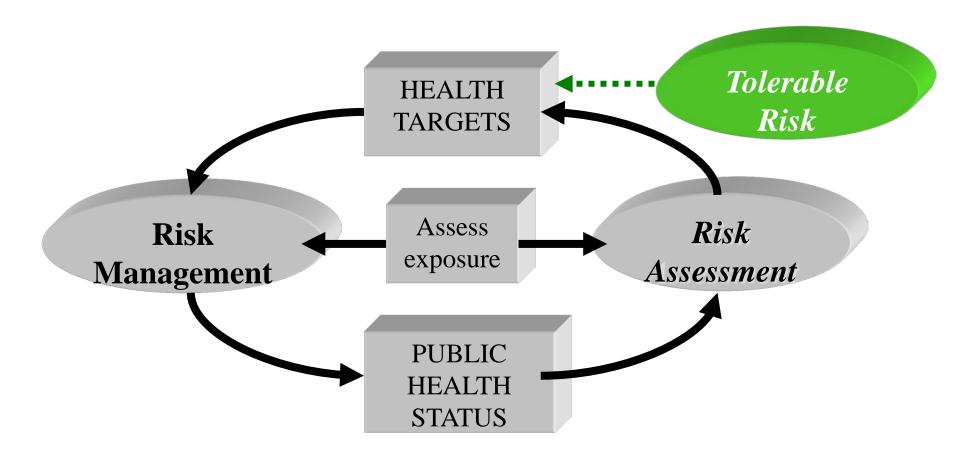

Parameter	California (Title 22)	Arizona	NSW - Australia	Israel
Designated treatment	Yes	Yes	Multiple barriers	No
Total coliforms / 100 mL	< 2.2 MPN		<pre><10 (90%ile) into < 100</pre>	
Fecal coliform/100 mL			< 1	-
Viruses	5-log ₁₀ reduction in spiking studies	<125/40 L restricted <1/40 L open use	<2/50 L	-
Parasites		<1/40 L	<1/50 L	< 1 ova/L
Turbidity (NTU)	<2 (daily average)		<2 50%ile <5 95%ile	-
рН	-	-	6.5-8.5	-
Color (total color)	-	-	<15	-
Chorine residual	1 mg/L	-	5 mg/L at first reservoir, 2 mg/L at customers	-

Key pathogen issues: Hazardous events & aerosolized pathogens

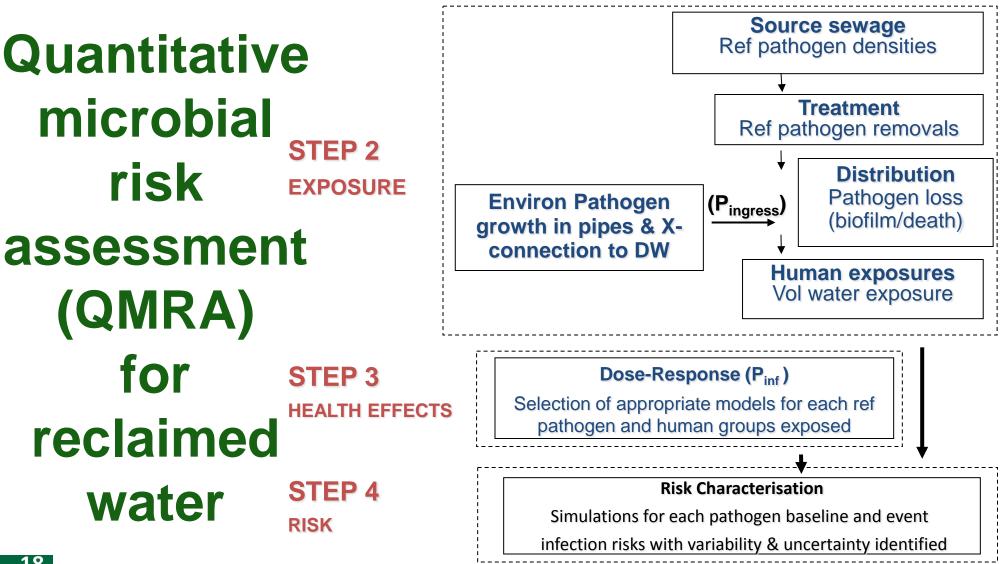
- System's approach to identifying & managing environmental pathogen risks depends on:
 - ID and control of short-duration hazardous events throughout the system; via
 - Surrogate target levels (at control points)

Quantitative Microbial Risk Assessment (QMRA): Regulatory & operational uses

• WHO & EPA set water criteria and/or treatment requirements based on QMRA (& epi) studies


e.g. EPA 3 & 4 log treatment reductions in surface water parasites & viruses resp. for Drinking Water (DW)

- Risk-based targets (also provides a QMRA goal)
 - Not current EPA policy: DW < 1 infection 10⁻⁴/year
 - WHO/AUS/CAN: DW & reuse: < 10⁻⁶ DALY/year
 - EPA policy: rec water < 32-36 NGI/1000 people.day


Failure of end-of-pipe monitoring: To verify at the 95% confidence level that failure events do not significantly add to GI risk (QMRA est.)

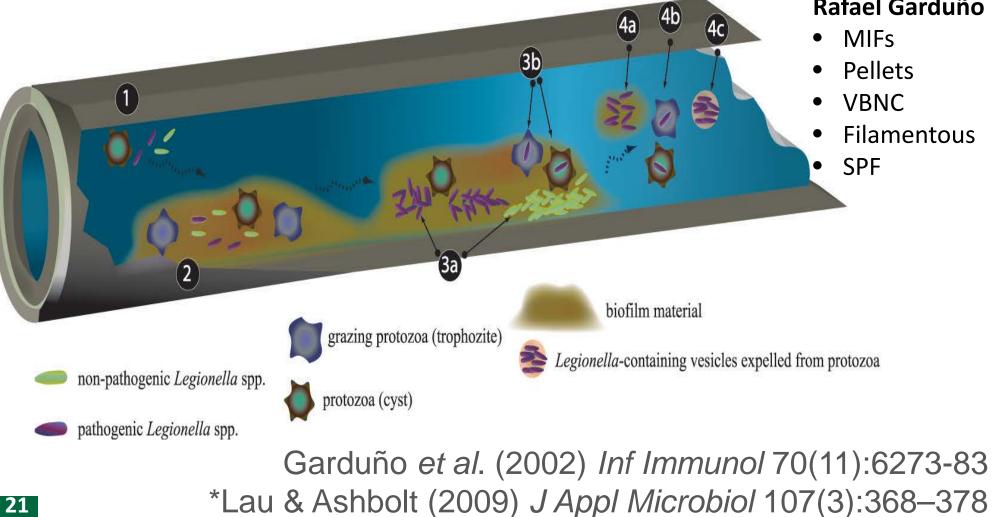
	Nominal log ₁₀ reduction	#/year	Monitoring interval		
	0.05	1	1 year E. coli		
	1	30	1 week		
	2	300	1 day		
SD	WA target	3,000	3 hours		
	4	30,000	15 min		
	5	300,000	2 min		
	6	3,000,000	10 sec		
	7	30,000,000	1 Sec		
	i.e. a 100,000 m ³ /d plant treatment designed for 4 log inactivation of viruses,				
	must monitored 3,000 L/d to be 95% confident that all drinking water was				
1	16	sufficiently treated Smeets (2008) PhD TU Delft			

WHO Risk management framework

Fewtrell & Bartram (2001) Water Quality: Guidelines, Standards and Health. Risk Assessment and Management for Water Related Infectious Diseases, WHO, Geneva STEP 1 SETTING **Problem formulation & Hazard identification** Describe physical system, selection of reference pathogens and identification of hazardous events

Application of QMRA to aid performancebased target setting in water safety plan

- Given that:
 - *E. coli* (drinking water) ≠ *E. coli* (recreational water) ≠
 E. coli (wastewater) ≠ *E. coli* (reused wastewater)
 - Viable enterococci more treatment resistant than E. coli
 - And faecal indicators < detection limits ≠no pathogens</p>
- Need to select appropriate control point targets, based on QMRA derived safe level for overall risks
 - Having identified likely events and where to manage them


WSP & key questions that need quantification

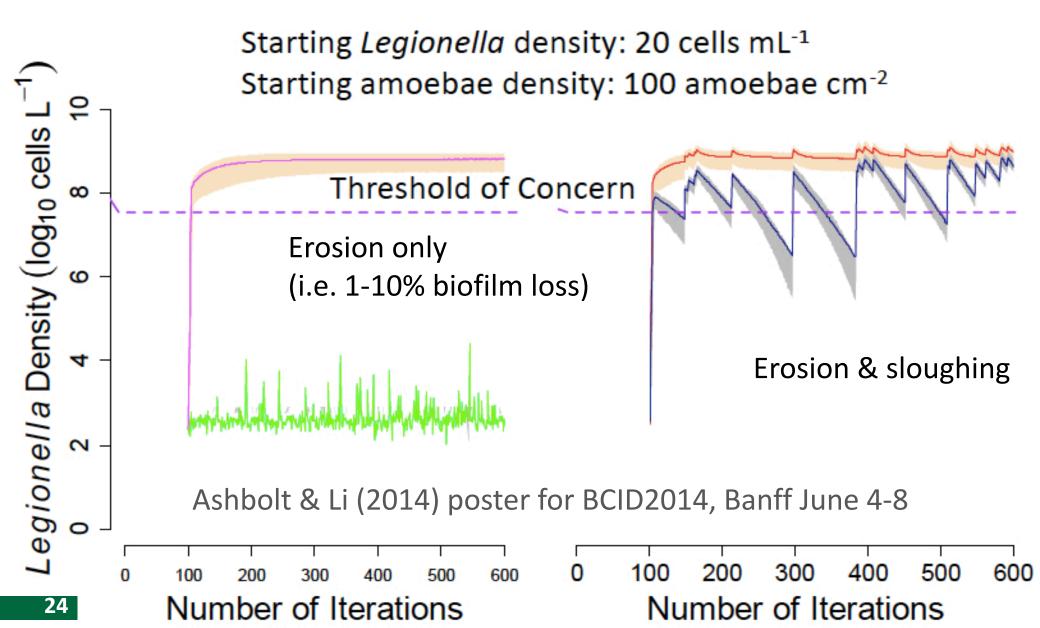
20

Conceptual model for Legionella in piped water*

QMRA for critical Legionella densities

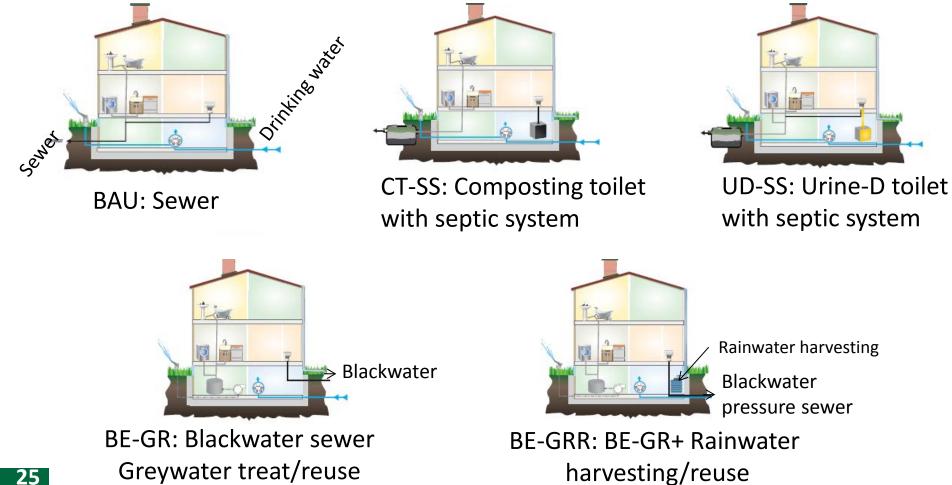
Critical # in DW 10⁶ – 10⁸ CFU L⁻¹ based on QMRA model Needs hosts to reach that

Biofilm colonization and detachment

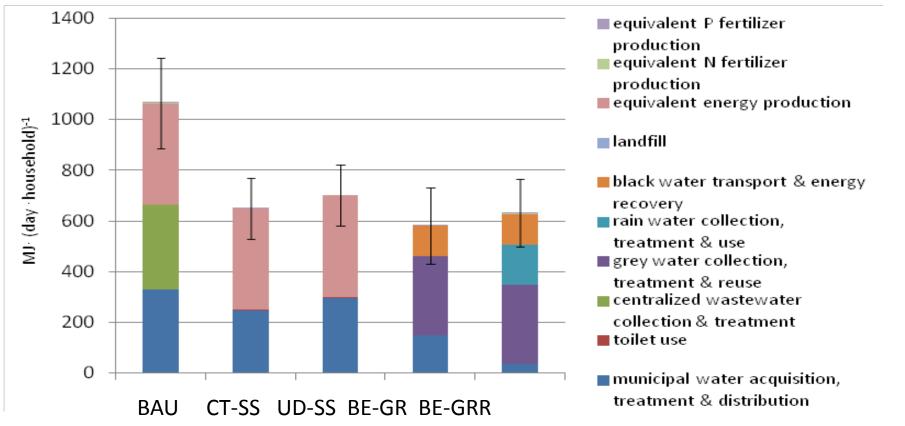

Aerosolization Critical # 35 – 3,500 CFU m⁻³ ^c based on QMRA model ^D Inhalation

Deposition 1-1,000 CFU in lung for potential illness

Schoen & Ashbolt (2011) Water Res 45(18): 5826-5836


QMRA-modelled *Legionella* densities Starting Legionella density: 20 cells mL⁻¹ Starting amoebae density: 5 amoebae cm⁻² Legionella Density (log₁₀ cells 0 2 4 6 8 Threshold of Concern **Erosion only** (i.e. 1-10% biofilm loss) **Erosion & sloughing** Ashbolt & Li (2014) poster for BCID2014, Banff June 4-8, 2014 600 500 200 n 500 200 300 600 Number of Iterations Number of Iterations 23

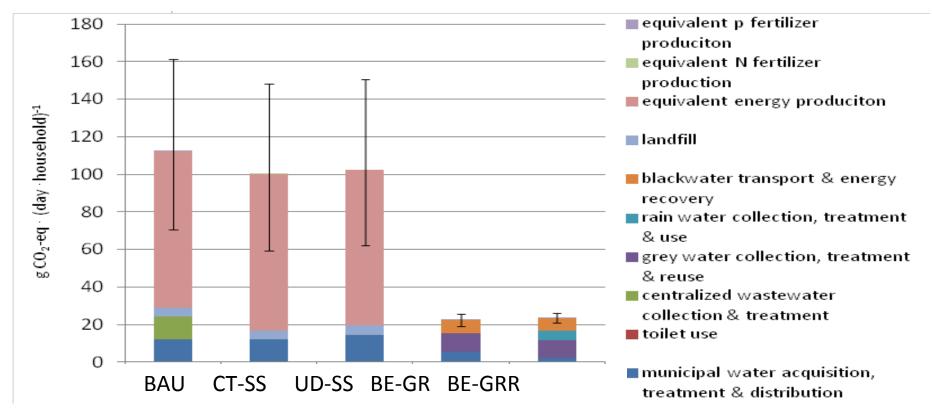
QMRA-modelled *Legionella* densities


Cape Cod MA - Case Study

Systems Examined:

Life Cycle Assessment

Results: LCA Energy consumption



BAU: conventional centralized sewer; CT-SS: composting toilet; UD-SS: urine diverting toilet; BE-GR: onsite greywater treatment recycle +black water pressure sewer BE-GRR: BBE-GR+ rainwater treatment

Xue et al. Environ Sci Technol, submitted

Life Cycle Assessment

LCA Global warming potential

BAU: conventional centralized sewer; CT-SS: composting toilet; UD-SS: urine diverting toilet; BE-GR: onsite greywater treatment recycle +black water pressure sewer BE-GRR: BBE-GR+ rainwater treatment

Xue et al. Environ Sci Technol, submitted

Human Health RA

- Reference pathogens (Cape Cod)
 - Human norovirus, Campylobacter, E. coli O157:H7, Cryptosporidium + Legionella (via rainwater system only)
 - Dose estimates: household & recreational exposure routes
 - Infection risks to disability-adjusted life years (DALYs)
- Disinfection by-products (DBPs)
 - The highest-risk class of chemicals associated with water & urban living (bladder cancer)
 - Focus on chloroform & bromodichloromethane
- Most risk from recreational water; e.g. as % of BAU
 - 63% for urine-diversion/septic, 23% composting toilet/septic, 15% for blackwater sewer, greywater reuse + RWH vs 1% without rainwater use

Schoen et al. (2014) Environ Sci Technol in press

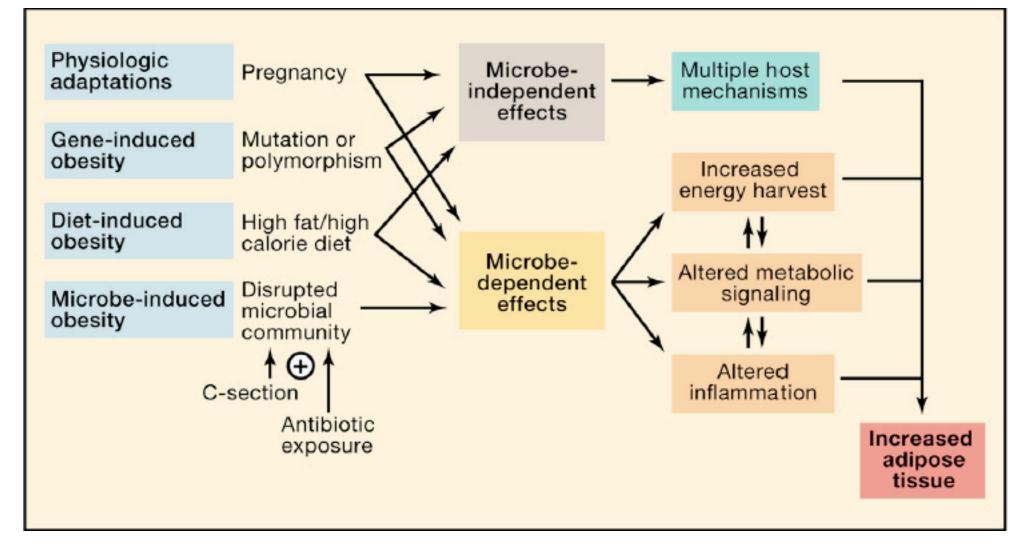
Summary

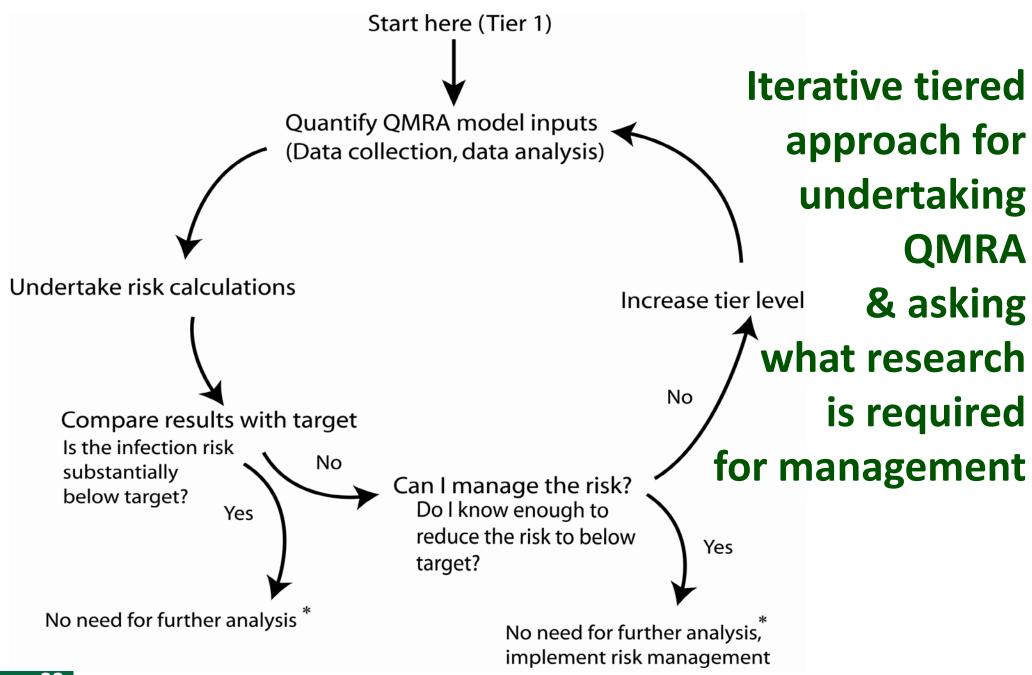
- Performance-based targets (QMRA-derived) identified along the source-to-customer treatment train
 - Requires identified surrogates for pathogen management
- Managed within an overall water reuse safety plan with external audit (as per Alberta DWSP)
- Allows for innovation in treatment options / systems rather than specifying limited allowed components
 - And moves us on from reliance of *E. coli* verification to critical control point monitoring & performance validation

Acknowledgments

Helen Buse (Lau), Mary Schoen, Jingrang Lu, Randy Revetta,

- Jorge Santo Domingo & Vicente Gomez-Alvarez –
- U.S. EPA Cincinnati OH
- Jacquie Thomas & Michael Storey (UNSW-Sydney)
- Norm Neumann, Qiaozhi Li SPH, University of Alberta
- Sébastien Faucher (McGill)


Questions?


Direct potable reuse (DPR) 2013

- City of Brownwood, TX first in North America
 - Texas Water Development Board Funding approved Sept 20th, 2012
 - TCEQ approved plant construction on Dec 21st, 2012
 - Met Texas Water Development Board (TWDB) Engineering requirements and Chapter 290 of drinking water regs
 - Completed its 90 d evaluation 2013 now in use 60-80%
- DPR in Texas requires 7-9 log path removal
 - Using reverse osmosis, nano filtration, UV, activated carbon filter, NH₂Cl disinfection then DW plant
 - Yet no clear near real-time pathogen monitoring

Childhood antibiotic intake & Obesity

Cox & Blaser (2013) Cell Metabolism 7(6): 883-94

