Update on Upstream Oil & Gas CEP Plan Implementation

Tara Payment October 28, 2015

CANADIAN ASSOCIATION OF PETROLEUM PRODUCERS

Water Conservation, Efficiency and Productivity Plan – Upstream Oil & Gas Sector (March 2011)

• Scope included water used for:

- Oil sands mining production
- Oil sands in situ production
- Conventional oil production
- Well drilling and completions
- Gas plants

• Excluded:

- Shale gas production (due to lack of available data)
- Midstream or downstream oil & gas activities
- Provided actual production and water use statistics from 2000 to 2009, and projections to 2015
- CEP performance measure:
 - Non-saline water use productivity; i.e., the volume of non-saline water used per volume of hydrocarbon produced
 - Projected improvements compared to baseline (average of 2002 to 2004)

CEP Plan Projected Improvements

Activity	Non-saline water use productivity (m ³ non-saline water/m ³ oil or bitumen)				
	Baseline (2002-04)	Projected (2015)	Improvement (%)		
Oil sands mining (Athabasca only)	3.18	2.30	28%		
Oil sands mining (total fresh)	4.04	2.83	30%		
Oil sands in situ	0.63	0.34	47%		
Conventional oil	0.70	0.60	15%		
Total	1.98	1.50	24%		

Sector Non-Saline Water Use

- Production increased by 82% between the baseline period and 2014
 - Baseline: 92.5 Mm3 OE
 - 2014: 168.2 Mm3 OE
- Total non-saline water use increased 10%
 - Baseline: 183.1 Mm3
 - 2014: 200.7 Mm3

Sector Non-Saline Water Use Productivity

- Improved 40% between the baseline period and 2014
 - Baseline: 1.98:1
 - 2014: 1.19:1

Oil Sands Mining Non-saline Water Use

- Between the baseline period and 2014
 - 68% increase in bitumen production
 - 16% increase in nonsaline water use
- Mined bitumen production
 - Baseline: 35.9 Mm3
 - 2014: 60.2 Mm3
- Non-saline water use
 - Baseline: 144.9 Mm3
 - 2014: 168.3 Mm3
 - Use from Athabasca decreased over decade 114.2 ->99.7 Mm3

Oil Sands Mining Non-Saline Water Use Productivity

- Improved 31% between the baseline period and 2014
 - Baseline: 4.04:1
 - 2014: 2.79:1
- Athabasca River water use productivity improved 48%
 - Baseline: 3.18:1
 - 2014: 1.66:1
 - Proportion sourced from Athabasca decreased 79% -> 59%
 - Increased proportion from runoff and mine depressurization water

Oil Sands In Situ Non-saline Water Use

- Between the baseline period and 2014
 - 269% increase in bitumen production
 - 56% increase in nonsaline water use
- In situ bitumen production
 - Baseline: 20 Mm3 OE
 - 2014: 73.8 Mm3
- Non-saline water use
 - Baseline: 12.5 Mm3
 - 2014: 19.5 Mm3

Oil Sands In Situ Non-Saline Water Use Productivity

- 1.0 Improved 58% between the Non-Saline Water Use Unit Rate (m³ water used:m³ bitumen produced) 60 70 70 80 80 80 baseline period and 2014 Baseline: 0.63:1 2014: 0.26:1 • Primarily due to: Saline All Non-Saline Water Sources for Oil Sands In-Situ Sub-Sector Note: Dotted lines are projection from 2011 CEP Plan (CAPP, 2011) groundwater use 0.0 2002 2003 2004 2005 2006 2007 2008 2009 2010
 - for steam generation
 - Reuse of mining wastewater streams for in situ makeup water

2011

2012

2013

2014

Conventional Oil Non-saline Water Use

- Between the baseline period and 2014
 - 7% decrease in production
 - 50% decrease in nonsaline water use
- Conventional oil production
 - Baseline: 36.6 Mm3
 - 2014: 34.2 Mm3
- Non-saline water use
 - Baseline: 25.7 Mm3
 - 2014: 12.9 Mm3
 - Proportion of nonsaline water decreased from 75% to 62%

Conventional Oil Non-Saline Water Use Productivity

Performance Relative to Baseline

Activity	Non-saline water use productivity (m ³ non-saline water/m ³ oil or bitumen)				
	Baseline (2002-04)	Actual (2014)	Actual Improvement	Projected Improvement	
Oil sands mining (Athabasca only)	3.18	1.66	48%	28%	
Oil sands mining (total fresh)	4.04	2.79	31%	30%	
Oil sands in situ	0.63	0.26	58%	47%	
Conventional oil	0.70	0.38	46%	15%	
Total	1.98	1.19	40%	24%	

Adoption of New Best Practices and Technologies

- 21 CEP opportunities were identified in the 2011 CEP plan that
 - Reduce the volume of non-saline water required to produce bitumen, oil or gas; or
 - Reduce the environmental impact of water use
- CAPP members were surveyed to evaluate the 21 opportunities for
 - Level of adoption
 - Challenges
 - Successes
- Opportunities were assessed for impact on water use

CEP Opportunities with Moderate to High Impact

- Reuse mining wastewater streams for in situ makeup water; e.g., blowdown from upgraders, tailings pond water
- Use saline groundwater for in situ steam generation
- Recycle produced water from oil and gas wells instead of disposal or release
- Updates to equipment and operating procedures for improved water efficiency
- Alternative, less water-intensive oil sands tailings technologies and management techniques
- Alternatives to non-saline water for drilling or fracturing fluids

CEP Opportunities with Low to Moderate Impact

- Treat waste/produced/saline water for reuse rather than disposal
- Reuse municipal wastewater instead of diverting new water
- Use saline groundwater for pressure maintenance
- Use evaporator technology to treat blowdown at in situ operations
- Add polymers to waterfloods for improved productivity
- Treat water to increase recycling rate from tailings ponds

CEP Opportunities Not Adopted

• Regulatory uncertainty

- Redefine water regs to prioritize use of lower quality non-saline water
 - Water Conservation Policy will identify alternative water sources - not released yet

In pilot or evaluation stages

- CO2 injection to enhance recovery instead of water injection
- Solvent injection to enhance recovery for in situ
- Combustion to enhance recovery for in situ

Cost and technical challenges

- Non-water-based mining extraction methods
- Storage of water in aquifers for future use
- Reduce evaporation from ponds

Concurrent Environmental or Social Benefits of CEP Efforts

• Surface water storage options for oil sands mining

- Does not reduce water use, but can change timing of withdrawals to reduce impacts to aquatic ecosystems.
- Less water-intensive tailings technologies
 - Lower dependence on water from tailings ponds -> smaller ponds
 - Lower energy and GHG emissions since less water needs to be reheated for use in bitumen extraction

• Updated equipment & operating procedures

- Water security
- Reduced trucking (noise, dust, air emissions, costs)
- Competitive advantage
- Improved social licence to operate
- Recycle produced water from oil and gas wells
 - Reduced trucking
 - Reduced fresh water use

Concurrent Benefits cont'd

• Evaporator technology

- Smaller physical footprint
- Polymer waterfloods
 - Lower GHG emissions

Environmental Tradeoffs of CEP Efforts

Reduction of river flows

Where wastewater would have been released

• Increased land disturbance/surface footprint

- Pipelines used to move water, rather than source wells on-site or trucking
- New infrastructure

Increased GHG emissions

- Pumping alternative water sources over distances requires energy
- Trucking water in
- Water treatment processes
- Evaporator technology

• Risk of spills/pipeline failures

- Transmission of saline/produced/waste water
- Additional waste generation
 - Water treatment processes

Adjustments Needed to Sector Plan

- Inclusion of shale gas, tight gas and tight oil water use
 - Once water use statistics are available
- Address overlap between existing CEP opportunities
 - Combine if a plan update is undertaken

Summary

- Upstream oil and gas sector has made significant improvements in non-saline water use productivity
- Improvements were equal to or higher than originally projected across all sub-sectors
 - Oil sands mining Athabasca River only: 48% (projected: 28%)
 - Oil sands mining total: 31% (projected: 28%)
 - Oil sands in situ: 58% (projected: 47%)
 - Conventional oil: 46% (projected: 15%)
- Overall, the sector had a productivity increase of 40%
 - 2011 CEP plan projection: 24%
 - Exceeded the Alberta target of 30% improvement relative to baseline
- Improvements were made due to many changes, especially:
 - Operational and equipment improvements allowing the switching from non-saline water to other quality-impaired sources (e.g., saline groundwater, produced water, and municipal/industrial wastewater)

